nipype.interfaces.nipy.utils module

Similarity

Link to code

Bases: NipyBaseInterface

Calculates similarity between two 3D volumes. Both volumes have to be in the same coordinate system, same space within that coordinate system and with the same voxel dimensions.

Deprecated since version 0.10.0: Use nipype.algorithms.metrics.Similarity instead.

Example

>>> from nipype.interfaces.nipy.utils import Similarity
>>> similarity = Similarity()
>>> similarity.inputs.volume1 = 'rc1s1.nii'
>>> similarity.inputs.volume2 = 'rc1s2.nii'
>>> similarity.inputs.mask1 = 'mask.nii'
>>> similarity.inputs.mask2 = 'mask.nii'
>>> similarity.inputs.metric = 'cr'
>>> res = similarity.run()
volume1a pathlike object or string representing an existing file

3D volume.

volume2a pathlike object or string representing an existing file

3D volume.

mask1a pathlike object or string representing an existing file

3D volume.

mask2a pathlike object or string representing an existing file

3D volume.

metric‘cc’ or ‘cr’ or ‘crl1’ or ‘mi’ or ‘nmi’ or ‘slr’ or a callable value

Str or callable Cost-function for assessing image similarity. If a string, one of ‘cc’: correlation coefficient, ‘cr’: correlation ratio, ‘crl1’: L1-norm based correlation ratio, ‘mi’: mutual information, ‘nmi’: normalized mutual information, ‘slr’: supervised log-likelihood ratio. If a callable, it should take a two-dimensional array representing the image joint histogram as an input and return a float. (Nipype default value: None)

similaritya float

Similarity between volume 1 and 2.